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ABSTRACT

}This paper presents a new algorithm to solve a network problem
with equal flow side constraints. The proposed solution technique is
motivated by the desire to exploit the special structure of the side
constraints and to maintain as much of the characteristics of pure

network problems as possible. \ Not only has specialized software for the

-

o
efficient solution of pure networks been developed, but the same compu-

tational efficacies lend themselves to the solution of sequences of

minimum cost network flow problems by using reoptimization procedures.

-OQur solution technique for the equal flow problem consists of solving

two sequences of pure network problems. One sequence yields tighter
lower bounds on the optimal value by considering the Lagrangean relax-
ation of the equal flow ﬁroblem in which the side constraints are dualized.
The second sequence yields upper bounds on the optimal value for the
problem and maintains a feasible solution at all times. This sequence is
obtained by considering a reformulation of the equal flow problem based
on parametric changes in the requirements vector. The procedure has the
added attractive feature that it provides a feasible solution which is
known to be within a percentage of the optimal at all times. As such,
the algorithm terminates when a solution with a prespecified tolerance’
on the objective function value is obtained. On NETGEN problems,

using the first 150 ares to form 75 equal flow side constraints, we found
that the new algorithm is approximately 3 times faster than existing

techniques and requires only 507% of the storage.
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| I. INTRODUCTION
5 This paper presents a new technique to solve the equal flow problem.
i This problem is easily conceptualized as a minimal cost network flow

- ‘ problem with additional constraints on certain pairs of arcs. Specifically,
given pairs of arcs are required to take on the same value. Applications
of this model include crew scheduling [6], estimating driver costs for
transit operations [28], aﬁd the two duty period scheduling problem [25].

The equai flow problem may be solved using a specialization of the simplex

method for networks wich'side constraints. However, by exploiting the
special structure of the side constraints, we have developed a new algo-
rithm which results in.a decrease in both computer storage and compu-

h tation tinme.

It is well documented that pure network problems can be solved from

fifty to one hundred times faster using specialized primal simplex soft-

ware as compared to general linear programming systems. Motivated by this
great advantage, our procedure solves the equal flow problem as a sequence
of pure network problems and totally eliminates the need to deal with a

basis matrix.

l.1 Problem Description

The equal flow problem i3 defined on a network represented by an (m,n)
node-arc incidence matrix, A, in which K pairs of arcs are identified and

required to have equal flow. Machematically, this is expressed as:




R R M N T N T e e, e g e W, BP0 T Tt aT LT TR ELES
........ e e I . .
............................

LA I T

. Minimize cx
f s.t. Ax =)
X T X e k=1, ..., K
0 < x <u

where, ¢ is a 1 x n vector of unit costs, b is an m x 1 vector of node
requirements, 0 is an n x 1 vector of zeroces, x is an n x 1 vector of
decision variables, and u is an n x 1 vector of upper bounds. The above
definition, henceforth referred to as Pl, assumes that the first 2K arcs
appear in the equal flow constraints. This assumption is in no way
restrictive since, by rearranging the order of the arcs, any equal flow
problem with K pairs can be expressed in the above form. Note that the K
pairs of arcs are mutually exclusive, i.e. an arc appears in at most

one side constraint.

l.2 Survey of Related Literature

In 1961, Charnes and Cooper (7] presented a specialized algorithm
for the model:

Minimize exX

MRS ONACCRONONE
v ™ e
@

S.C. Ax = b
*
L' Cx = d
;L x>0,
!! where A and C are some -general matrices but A has some favored structure.
b .
5{ Their algorithm, called the double reverse method, takes advantage of
i: the special structure of che matrix A. Variactions of this algorithm may
!

be found in (2, 8, 10, 15, 19, 24]. Specializations for multicommodity
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problems may be found in [14, 20, 21].

In 1980, Shegardson,and Marsten [25] showed that the two duty period
scheduling problem can be reformulated as a single duty period scheduling
problem with equal flow side constraints. They obtain a Lagrangean dual
for this equal flow problem, by dualizing with respect to the equal flow
side constraints. This Lagrangean dual is maximized using the subgradient
optimization technique. 1In 1984, Turnquist and Malandraki [28] modeled the
problem of astimating driver costs for transit operations as an integer
equal flow problem. They obtain a Lagrangean dual for their problem, by
dualizing with respect to the side constraints. Their algorithm is a
slight modification of the subgradient optimization technique. They
perform a line search between two successive solutions obtained during
the subgradient optimization process.

Beck, Lasdon, and Engquist [5] transformed the equal flow problem
into a quadratic programming problem which has a penalty for violating
the equal flow constraints. They solved this nonlinear programming
problem using the Fletcher-Reeves conjugate gradient method [9], a
successive linear programming code [13], and a convex simplex code.

If the penalty is sufficiently large, this approach is guaranteed to

converge to the cptimal solution of the equal flow problem.

1.3 Objective of the Investigation

The objective of this investigation is to develop and computationally

test a new algorithm for the equal flow problem. This algorithm utilizes

the subgradient optimization technique and is based on the relaxation/
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restriction procedure proposed by Glover, Glover, and Martinson [11] for
a generalized network model with special side constraints. We establish
that the equal flow problem may be solved as two sequences of pure
network problems, one sequence corresponds to computing a lower bound
while the other corresponds to computing an upper bound. In the limit,
both bounds will converge to the optimal objective value. Our implementation
terminates when the difference between the bounds is within a prespecified
tolerance.

The subgradient optimization technique requires the comﬁutation of
subgradients, choice of appropriate step sizes, and the application of
a projection operation. We show that the subgradients for the upper
bound can be computed using the optimal dual variables obtained by
solving pure network problems. We also develop theoretical resulcs
that yield an easy implementation of the projection operation. The
step sizes selected are a modification of the ones proposed by Polyvak
[23]. For this choice of step sizes, we prove that our algorithm must
necessarily obtain an iterate at which the objective value is arbitrari-
ly close to the optimal objective value. In a computational study,
comparing our code with a code that is designed to solve network problems

with side constraints, we found that the new code runs approximately 3

times faster and requires 502 less core storage.
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I1. THE SUBGRADIENT ALGORITHM

The Subgradient Algorithm was first introduced by Shor [27] and is
a general procedure for solving nonlinear programming problems. It may
be viewed as a generalization of the steepest descent (ascent) method
for convei (concave) problems in which the gradient may not exist
everywhere. The subgradient is simply substituted in place of the
gradient for those points for which the gradient does not exist. When
this occurs, the algorithm may move to a point with objective value
worse than the current point. Hence, the objective function does not
necessarily improve at each iteration and consequently the convergence
results of Zangwill [29] do not apply. Remarkably though, under fairly
minor condirions on the step size, convergence can be guarﬁnteed.

Let the nonlinear program PO be given by:

Minimize £(y)

s.t. yeei

where f is a real valued function that is convex over the compact, con-

vex, and nonempty set G. A vector N will be called a subgradient of f

at y if £(y) - £(¥) > n(y - y) for all y € G. For any y € G, we denote

the set of all subgradients of f at y by 3f(y). The subgradient algorithm
makes use of an operation called the projection operation. The projection

of a point x onto G, denoced by P(x], is defined to be the unique point y € G
that is nearest to x with respect to the Euclidean norm. Using the projec-
tion operacion, we now presant the subgradient algorithm in its most

general form.
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ALG 1 SUBGRADIENT OPTIMIZATION ALGORITHM

Step 0 (Initialization)

Let Yo be any element of G, select a set of step sizes
so,sl,sz,..., and set 1 « 0,

Step 1 (Find Subgradient)

Let n; € af(yi). If n, = 0, then terminate with ¥y optimal.

Step 2 (Move to New Point)

Set Vipp * P[yi - sini], set i + i + 1 and return to step 1.

Various proposals have been offered for the selection of the step

sizes. Three general schema which have been suggested are:

i) s; = li,
A

1) s, =t
ling |l
A (£(y)=£%)

1id) s, = y, 0 <A, <2,
i 2 i

lingll

where f£* is the optimal value of f over G. If the constants, Ai's,

satisfy the following conditions:

i i ’

i»

A{20,all4; lim XA =0; and [ A, ==,

then the convergence of the algorithm is guaranteed using (i) or (ii)

(see Goffin [12], Helgason (17], Kennington and Helgason (21]). For the
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upper bounds, we use a modification of the third step size. The

following result is available for this scheme.

Proposition 1 (Polvak [23])

Let £ be a real valued convex function over the compact, convex,
and nonempty set G. Also, let f* be the minimum of f and!lniH < C for
all i and some constant C. Then there exists a y; € G with f(y;) -+ f*,

if scheme (iii) is used.

Note that in (iii), f* is the optimal value of £ over G. Since the
optimal objective is unknown before solving the problem, we use a lower

bound on f* in our implementation.
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III. THE LOWER BOUND

Recall that the equal flow problem, which ve denote by Pl, is
given by:
Minimize ex
s.t. Ax = Db
X = Xerk ° k=1,...,K
0 <x<u.
In our algorithm for Pl, lower bounds on the optimal objective of Pl are
used for step sizes and for termination. In this section, we describe a
procedure to obtain these lower bounds.
Consider the following Lagrangean dual for Pl, which we shall
refer to as Dl: -

Maximize h(w) , where w = [wl,...,wK] £ RK, and

K
h(w) = Min{ex + [ w (x, -
k=1

xx+k): Ax = b, 0 < x <ul.

Proposition 2 (Shettv [26])

Let x he a feasible solution to Pl and let w = [wl,...,wk] be

a feasible solution to Dl. Then cx > h(w).

Proposition 3 (Bazaraa and Shecty [4])

If Pl has a minimum, then the optimal objectives for Pl and D1l
are equal.
AS a consequence of Propositions 2 and 3, we may solve Dl to

obrain a lower bound. Ve will now show that D1 may be solved using the

''''''''''''''''''' PR S S o o PPN VA A




pe—_— . Lo St SEut Sash ek bt gkl e Jaaie g

VI. COMPUTATIONAL EXPERIMENTATION

This section describes the computer implementation, EQFLO, and
testing of our algorithm for the equal flow problem. Thé algorithm
was tested on a set of 35 test problems randomly generated using
NETGEN {22]. Computation times are compared with those of NETSIDE (2],
a general purpose code for network problems with side constraints.

Both NETSIDE and EQFLO are written in standard FORTRAN for an incore
implementation and have not been tailored to either the machine or

FORTRAN compiler used for testing.

6.1 Description of the Computer Codes

NETSIDE was developed by Barr, Farhangian, and Kennington at
Southern Methodist University, Dallas, Texas. Designed to solve network
problems with side counstraints, it used a specialization of the revised
simplex method known as the primal partitioning algorithm [15]. The
basis inverse is maintained as a rooted spanning tree and a working basis
inverse in product form. The reinversion routine is a modification of the
work of Hellerman and Rarick (18] and uses the "spike swapping theory’
of Helgason and Kemnington [16]. The initial working basis consists of a
combination of artificial and slack variables. The working basis is
reinverted every 50 iterations. The pricing routine uses a candidate list
of size 10 with a block size of 400. Both pricing and pivot tolerance are
1.E-6.

EQFLO is our implementaiton of ALG 4, and makes use of MODFLO (1] to

solve pure network subproblems. MODFLO is a set of subroutines which may

- - .~ - .~ . - . . ~ - . DR N - MRS I
...... . e R R N Sl oL o
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Step 2 (Compute Upper Bounds)

2a. Set T « 0, set IFLAG <« 1.
2b. Call Alg 3 (steps 2 and 3a)
2c. Set R « R+l.

If R < ITERU, then go to 2b.

step 3
Set R « 0.
Set p + Pg*
Go to 1.

In the above algorithm, IFLAG is used in obtaining a starting y from the
solutions in la. The bases used in steps 1 and 2 are generated from the

optimal bases obtained in the previous iterationms.




...........

V. THE ALGORITHM

In this section, we present our new algorithm for solving the equal
flow problem. Let ITERL denote the number of iterations spent in step la
in computing the lower bound before returning to the upper bound, and
ITERU denote the number of iterations spent in computing the upper bound
before returning to the lower bound. Also, let T denote the iteration
count for the lower bound, R denote the iteration count for upper bound,

and Py denote the initial step size for the lower bound.
ALG 4 SUBGRADIENT QPTIMIZATION ALGORITHM
FOR THE EQUAL FLOW PROBLEM

Step 0 (Initialization)

Initialize ITERL, ITERU, REREQ, )‘0’ Pq> and tolerance g.
Set T+ 0, set Q « 0, set R « 0, set w+ 0, and set IFLAG « 0,

Set UBND + + =, get LBND +« = ®, get p + po, and set Xk - >‘O for k=1,...,K.

Set 4 « (min(ul,ux+l),...,min(uK,uZK)).

Step 1 (Compute Lower Bounds)

la. Call ALG 2 (steps 2 and 3a).
lb. Set T « T+l
If T « ITERL, then go to l.
le. (Initialize y)
If IFLAG # 0, ‘then go to 2; otherwise,

set y + [min(ﬁl,(§1+§R+l)/2),...,min(ﬁx,(;.xéﬂ?zx)ﬂ)].

-----
.........

-----------
......




e e A Tes Re e S A AS S Siul AR bR S A AR AR

) 2 8

= 7 + 8*( - a)

(2/\i - Xi) 2-8 2-8

2 8
< M§ + g*( - o), where M is a constant less than
= 2-8 2-8
1
(2e-¢)

This completes the proof of Proposition 12.




We can choose an integer N large enough that

2
¢ {ly, - y* ||2

< N.
(g* - g)é

Adding together the inequalities obtained from (1) by letting i take

on all values from 1 to N, we obtain

2 2
g =y*lI" <y, =y lI° - 5 <0,

a contradiction. This justifies our assertion.

By simplifying our assertion further we get,

s g Ay 2g*
(ZAi - A7) 2 - 1) (2 - X)) -
i i
i
s a g*A 2g*
< - i -+
- 2
- p , - -
(2)1 i) {2 Xi) (2 Ai)
§ " on 2 -a Ai
§ Ai
- 7+ g*(1 + (1 -a)
(ZAi - Ai) (2 - ki)
8
< 3 + g*(1l + (1 - a))
(ZAi - Ai) 2-8
18
N e e A A D e e L Gl e
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Suppose that for all i,

AT 8 'ZAi g* )

glyy) >

: 5 - > , where
- ZXi) (Ai - Zki) (Ai - Zki)

S Y

(A

§ > 0 is given. Llet y* £ S be an optimal point. By Proposition 11,

2 -2 -
Ai(g(yi)-g) ZAi(s(yi)-g) ni(y*- yy)
+

. 2 2
I, | T

Since n, € 3g(y,), n,(y* = y;) < g* - g(y,).
Thus,

. . NEUPD 2 GBI e - sy
|y o= v* s Ty =y "+ + 3

In, 117

In, 112

2 2 -
g(yi)(ki - ZJ\J._)-Ai g+ 2, g*

=y - 1%+ Gp-n

ENE
, (BOp -8
Sy =9l -
I n, 112
. 2 (8% - g)8
Sy =y fl© @ ——— (1)
C2
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In our implementation, we use E, a lower bound on g, in place of g*,
The following propositions demonstrate that for g's close to g*, our

procedure must necessarily obtain an iterate at which g is arbitrarily

close to g*.

Proposition 1l (Kennington and Helgason [21])

1f ng #0,

2 12 2y g2
I Yie1 = Yi” < I Yy < vl ©+ si” niH + Zsini(y - yi) for any y € §

and step size si.

Proposition 12

g Let g* be the optimal value,of g, and also let
F i) 33*5;58*,05@31,

1) s, = A& - B/ 0l and

iii) 0<ec< Aif 8 < 2 for all i.

If there is a constant C such that || nill < C for all i, then there

2 8
exists some i such that g(yi) < M6 + g*( T8 - 3-8 a) for any § > 0

and for some constant M.

Proof

First, we assert that there is some i such that

2 - *
Ai g ' ZAi 8 §
g(y.) < - - , for any & > 0.
i 2732 z_, 7
(Ai - ZAi) (Xi -Xi) (Xi Zki)
16 -
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Set UBND + cx.

If (UBND ~ LBND) < €(UBND), then terminate with x optimal;

otherwise,
set vj « '"FROM(j) + ﬂTO(j) + cj’ ji=1,...,2K,
b“. . Set n - (Vl + VK+1,000,VK+V2K)¢
il If Q = RFREQ, then set Q « 0, set A « \j, set Xk « XAy

for k=1,...,K, and go to 3;

otherwise,

compute Xk such that 0 < Ve = Aknk < Ui» k=1,...,K,

set Xk - min{xk/Z,xk}, k=1,...,K,

set A « min{ik,k-l,z,...,K}.

Step 3 (Move to New Point)

(UBMND - LBND)
I n |l 2

3a. Set y + Py - A n], set Q « Q+1.

3b. Go to 2.

Note that the step size (iii) presented before may be rewritten

for our function g as follows:

Xi(s(yi) - 8g*)
s, - > , 0¢< Xi < 2,
Hn, I

where ni £ ag(yi) and g* is the optimai value of g.

.................................
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where L,M are integers and 0 < L,M <K, Then

P(y) = y* = (0,...,0 ,...,EK) is

-~ P -~
S FSERREED ST, FEVIRY
a projection of ; on S.

Following a description of the terminology used, our algorithm for

"
i
B
b
P‘-
’-

obtaining an upper bound for Pl is presented below. Let RFREQ denote the
frequency at which the constant A in step size (iii) is reset to its initial
value, Xo, LBND denote a lower bound on Pl, UBND denote an upper bound on

Pl, P denote the projection roucine described in Proposition 10, € denote

the termination tolerance and Q denote the iteration count for the

upper bound.

ALG 3 UPPER BOUND ALGCRITHM
Step 1 Initialization)

Choose y € S.

Initialize LBND, RFREQ, £, and Ao.

Set u + (min(u min(u

l’“K“l'l)’...’ Knuzx))-

Set Q + 0, set Xk - XO for k=1,...,K.
Step 2 (Find Subgradient and Step Size)

For. allocation y, let X and ;, respectively, be the vectors of

optimal primal and dual variables for

®)

AN ~ -
Min{cx: Ax = 6, 0 < X < G}, Construct x from Xx,y.

...........
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for P4. Suppose the arc corresponding to j has "From" node 3 and "To"
node jz. That is, arc j is the ordered pair (jl’jz)‘ Then we define
FROM(3) = jl and TO(j) = jz. Using this notation, the following propo-

sition giveé the required formulae:

Proposition 8 (Shett 26
Let ; be the vector of optimal dual variables for P4. Then

] with v +c,, j=l,...,2K,

[ﬂ’ vl’vK+l’¢-0’vK’v2K j bd -ﬂmou(j) + ﬂ,ro(j) j

are optimal duals for P3.

We now present two propositions that justify the projection routine
used for the upper bound. The proofs may be found in Kennington and

Helgason [21] and Shetty (26].

Proposition 9

Let S be a nonempty, convex set and ; £ S. Then y* ¢ S is a

projection of ; on to § if (§ - y*)(y = y*) <0 for all y € S.

Proposition 10

Lat y= (;11;29-00’9K) >4 RL with

Yk<0 fork. 1’0.0'11

0 ( }'k - k’ uk - min(uk’ ux+k) for k - L+l,oo.,L+H

~

Yk>uk fOtk'L"ﬂ"’l,...,K

.......
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X =¥ (vK)
2k "k (Vo)
0<x<u (1-!)-'

Then n = (vl + Ve+1? Vg + VZK) is a subgradient of g at y = (yl,...,yK).

As a result of Proposition 7, a subgradient at any given point
y= (yl,...,yK) € S required in our specialization of ALG 1 can be
obtained by solving Min{cx: Ax = b, X] ™ FyseeerXge = Ygr 0 S x < u}, which
we shall refer to as P3. After substituting Xp % preeesXop = Vg in
Ax = b, we obtain a pure network problem, which we shall refer to as
P4 and is given below:
Minimize

~

=)

° & &3

<x <.
To apply ALG 1, we need a procedure for constructing the optimal dual

variables (vl’vK+l""'vK’v2K) for P3 from che optimal dual variables
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IV. THE UPPER BOUXD

An alternate formulation of Pl, which will be referred to as P2,

»,
»
»
»
-
.
)
-
»
v
o

is as follows:

Minimize g(y)

S.t. y €8
where for any vector y = [Yl.ooo,YK],

g(y) = Min{cx: ax = b, 0 < x S u, X, = Xepe = Yy for all k}

and

S = {y:0¢ Yy < min(y, ,u ) for all k}l.

K+k
Clearly, Pl and P2 are equivalent. That is, given an optimum for one,
we can construcé an optimum for the other. We will now show that P2

is a special case of the nonlinear program PO and may be solved using

the Subgradient Optimization Algorithm, ALG 1.

Proposition 6 (Shetty [26])

The real valued function g is piece-wise linear convex over the
compact, convex and nonempty set S.
To apply the subgradient algorichm, we need a procedure for obtaining
a subgradient of g at a point y. The following proposition shows that

the dual variables may be used to construct a subgradient.

Proposition 7 (Shetty [26])

Let (ﬂ,vl,vx+l,...,vx,v,x,u) be the optimal dual variables for

..................................................
..............
Tt et et PR TR Tl S ) -~ ey - .
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Step 2 Find Subgradient)

Let X = [;1""’;n] solve

K
h(w) = Min{cx + kzl wk(xk - xK+k): Ax = b, 0 < x < u}.

Set LBND « h(w).
I1f (UBND - LBND) < €(UBKD) then terminate;

otherwise, set d + [(x1 - xK+l)""’(xK - xZK)].

Step 3 (Move to a New Point)

3a, Set w+ w + pd, set p +« p/2.

F 3b. Go to 2.

.....
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subgradient optimization technique for concave functions. This tech~
nique is similar to ALG 1 with a modification. Let po,pl,pz,...
denote a sequence of step sizes and let di £ Bh(wi). Then step 2 is
replaced by:

Step 2 (Move to New Point)

Set Vitl - v + pidi’ set i +« i+l and return to step l.
To use this algorithm h(w) must be concave, and we need a means

of generating subgradients. These two resulrs follow:

Proposition 4 (Shetty {26])

, X
The real valued function h is concave over R,

Proposition 5 (Shettv [26])

For a given W, let x be an optimal solution to

K
Min{cx + kzl Wy = X 0 Ax = b, 0 < x <l

Then d = [(xl - xK+l)""’(xK - XZK)] is a subgradient of h at w.

We used scheme (i) for step sizes. Let UBND denote an upper bound and
assume that the optimal objective value is positive. Our algorithm for

obtainin§ lower bounds is presentced below:

ALG 2 LOWER BOUND ALGURITHM

Step 1 (Initialization)

Inicialize UBND, step size p, and tolerance ¢.

Set w +~ 0,

....................
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be used to solve a network problem as well as reoptimize after problem
data changes. Based on NETFLO (21], this code allows :he.user to change
costs, bounds and/or requirements for a network problem and reoptimize.
The tuning parameters used in all runs were as follows: ITERL = 5,
ITERU = 10, REFREQ = 5, Ao = 0,75, Py = 0.01, and € = 0.1. MODFLO (1]
is used to reoptimize after each change to either the costs or right-

hand-sides.

6.2 The Test Problems

The program NETGEN, a generator for large-scale network test
problems, was used to generate 35 test problems. The parameters used

to generate these problems are described in Klingman, Napier, and Stutrz {22].

The test problems have between 200 and iSOO nodes, and 1500 and 7000 arcs.
For each problem, the first 150 arcs were paired to form equal flow sides

constraints. The characteristics of these test problems are listed in

Table 1.

Our algorithm requires upper bounds on all equal flow arcs. Though
NETGEN generates bounds on some of these arcs, there were others with no
upper bounds; We set the maximum of all supplies and demands to be the
upper bounds on such arcs. These bounds were acceptable since the optimal
solutions obtained for our pure network problems were the same as the ones
listed in NETGEN. Furthermore, for all 35 test problems the first 150 arcs
were .sed to form 75 pairs of equal flow side constraints. We were unable

to experiment with more than 75 pairs due to a core storage limitation of

301K. NETSIDE required approximately 300K octal words of storage for

------ -
A s o




L ety g S - Sed i S dE A S AR SR BE Tl Thall Wadh Wil Vel S P - =~ =
e TS A it A o 2wn % maa e b snies e e e Moo o e i A, 1 Lo AL/ R AR A

Jiw 1V ." "

problems 28 through 35 with 75 pairs and any further increase in the

number of pairs would exceed the storage limitation.

o
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6.3 Computational Results

All 35 test problems were solved on the CDC 6600 at Southern
Methodist University, using the FIN compiler with OPT = 2. All 35
problems were solved twice using EQFLO; once with the same step size
for every pair of equal flow arcs and the second time with aifferent
step sizes for different pairs. While using EQFLO to solve these
problems, ALG 4 was followed exactly the first time, whereas, the
computation of che_step size for the upper bound was altered the second

time. The modification was as follows:

Step 3 (Move to New Point)

_ (UBND-LBND)
3a. Set Ve P Y = Ak I ||2 LU I k=1,...,K,

set Q + Q+1.

Note that this modification results in different step sizes for different

equal flow pairs. The details of all runs are given in Tables 2 and 3.

The times are in CPU seconds and exclude input and output.
The value 0.01 used for Po worked well for all test problems except
problem number 1l. This problem experienced difficulties in converging

within 10% of the optimal. However, the problem did converge within 10%

..........
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of the optimum when we changed Po to values between 3 and 10.

The computational results presented in Tables 2 and 3 are summarized
in Table 4. Letting T(ALG) denote the CPU time required to solve the 35
test problems using code ALG, the relationship is given below:

T(NETSIDE) = 2.54 (EQFLO), same step size,

T(NETSIDE) = 3.00 (EQFLO), different step sizes.
Note that EQFLO performs better as the problem size increasés. Although
EQFLO was slightly slowetl:han NETSIDE on problems 1 to 10, its performance
iﬂcreﬁéed substantially on problems 11 to 35. In particular, EQFLO ran
approximately 5 to 6 times faster than NETSIDE on problems 28 through 35
and cheSe problems are fairly large. We expect EQFLO to perform even
better on much larger problems. This is attributable to the fact that

the time for pricing and updating increases dramatically for NEISIDE

with an increase in the size of the network, whereas, the time increase
should be relatively small for EQFLO because the above operations are
P performed very efficiently using labelling procedures on the rooted

spanning tree.

The 75 side constraints made the problems approximately three times
harder. That is, the pure networks were solved in 693 seconds while it
required 1973 seconds to solve the equal flow problem. Klingman,
Napier, and Stutz t22] solved the same 35 pure network problems in

approximately 200 seconds using an advance start on a CDC 6600 ar rha
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University of Texas at Austin. Richard Barr's best time on these
35 test problems is 104 seconds using ARC IT [3). This difference in
time is due to the fact that EQFLO is a real code (as opposed to all-
integer), uses an all artificial start, and does not use the advanced
data structure or candidate lis; incorporéced in ARC II.

These 35 problems were the largest that could be solved using
NETSIDE under a core storage limitation of 301K octal words. However,

EQFLO required much less storage; approximately 50 less than NETSIDE.

& This additional storage for NEISIDE results from the working basis

ﬁ;_ inverse and the arrays required during the reinversion process.
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VII. SUMMARY AND CONCLUSIONS

This paper presents a new procedure for the equal flow problem.
Unlike the simplex method for the network problem with side constraints,
this new procedure does not require a working basis. We have showed
that using the subgradient optimization technique, the equal flow
problem may be solved as two sequences of pure network problems. One
sequence corresponds to a lower bound while the other corresponds to
an upper bound. In the lower bound, eacﬁ network differs from the
previous one in that the cost vector has changed. In the upper bound,
each network differs from the previous one in that the right hand side
has changed. While solving the pure network problems with these
cpanges.in the problem data, a-reopcimization procedure is used to
obtain a good starting solution. Our technique terminates when the
difference between two bounds is within a prespecified tolerance.

Subgradients for upper bounds are computed using the optimal
dual variables obtained by solving the pure network problems. The sub-
gradients for lower bounds are the difference between the flows on the
equal flow arcs, obtained while solving the Lagrangean relaxation. The
projection operation is easily implemented. The step sizes (i) and
(iii), described in Section II, are used for lower and upper bounds,
respectively. For these step sizes, we are guaranteed a solution at
which the objective value is arbitrarily close to the optimal objective
value.

We solved all test problems twice; once with the same step size for

.....................
-----------
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y all equal flow pairs, and once with different step sizes for each pair.
The tests were conducted on a set of 35 randomly generated problems and
a comparison was made with NETSIDE, a code that is designed to solve

network problems with side constraints. On the average, our code ran

L DR NS

approximately 3 times faster. However, it's perfqrmance improved
substantially as the problem size increased. The new algorithm requires

I only 50% of the core storage required by NETSIDE.
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Table 1

NETGEN Test Problems

Problem Number

Number

of Nodes

Number of Arcs

Transportation Problems

1 100 X
2 100 X
3 100 X
. 4 100 X
5 100 X
6 150 X
7 150 X
8 150 X
9 150 X
10 150 X
Assignment Problems
11 200 X
12 200 X
13 200 X
14 200 X
15 200 X
Capacitated Network Problems
16 400
17 400
18 400
19 400
20 400
21 400
22 400
23 400
24 400
25 400
26 . 400
27 400
Uncapacitated Network Problems
28 1000
29 1000
30 1000
31 1000
32 1500
33 1500
34 1500
35 1500

100
100
100
100
100
150
150
150
150
150

200
200
200
200
200

1511
1700
2207
2405
3100
3450
4800
5470
6395
6611

1900
26350
3400
41350
4900

1374
2511
1374
2511
1484
2904
1484
2904
1398
2692
1398
2692

3000
3500
4500
4900
4492
4335
5237
5880
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Table 2 Comparison of NETSIDE and EQFLO on 35 Test Problems
Tl (Same step size for every equal flow pair)

- Problem "NETSIDE EQFLO
l Number
N Optimal = Total Time Z of Optimal
o Objective Time at Termination
> ' Total Pure Lower Upper Lower Upper
. Network Bound Bound . Bound Bound
= 1 2694547 30 S0 7 19 24 98 108
- 2 2350637 24 S8 7 23 28 95 105
- 3 1939836 27 127 9 S5 63 99 110
= 4 1612265 33 79 10 33 36 98 108
E 5 1480761 33 40 12 13 15 97 108
6 2472907 71 46 22 9 15 98 108
7 2236784 96 59 28 14 17 97 107
8 2223900 84 58 32 11 15 99 108
9 1839835 115 A 36 6 2 98 108
; 10 2291942 105 79 36 19 264 96 106
= 11* 4992 135 51 17 11 23 98 108
-l 12 3573 105 93 23 20 50 95 105
e 13 3142 103 78 27 16 35 98 108
" 14 2787 118 34 31 1 2 99 101
Ei 15 2795 150 127 35 31 61 97 108
?; 16 82161432 43 8 6 1 1 99 107
£ 17 45601025 66 13 8 4 1 99 105
. 18 81600312 40 8 6 1 1l 99 106
) 19 45601025 66 12 8 3 1 a9 102
20 74065202 40 9 6 2 1 99 108
21 40137087 4b 11 8 2 1 99 101
22 73429862 32 8 6 1 1 99 109
23 39354594 33 11 8 2 1 99 101
24 85926653 91 7 3 3 1 98 104
25 58203746 66 9 5 3 1 99 101
26 74267081 65 6 3 2 1 97 102
27 47295659 57 7 4 2 1 99 107
28 131316225 201 31 20 9 2 99 107
29 113594497 260 167 25 72 70 98 107
30 90569484 337 243 23 111 109 91 106
31 84943754 296 A 24 16 4 99 109
. 32 180390305 529 80 48 2 7 98 109
- 33 205246112 453 83 47 23 13 98 108
- 34 166247998 477 95 51 2 20 96 106
. 35 163964307 303 68 52 11 5 99 107

k bad po = 10.




Table 3 Comparison of NETSIDE and EQFLO on 35 Test Problems
(Different step sizes for different pairs)
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Problem NETSIDE EQFLO
Number - —- - _
Optimal Total Time % of Optimal
Objective Time at Termination
Total Pure Lower Upper Lower Upper
- - - Network Bound Bound Bound Bound
1 2694547 30 47 7 16 24 97 108
2 2350637 24 50 7 19 24 94 105
3 1939836 27 105 9 42 S4 99 109
& 1612265 33 74 10 29 35 98 108
5 1480741 33 37 12 10 15 95 106
6 2472907 71 46 22 9 15 98 107
7 2236784 96 57 28 13 16 97 105
8 2223900 84 42 32 4 6 98 109
9 1839835 115 A 36 6 2 98 105
10 2291942 105 76 36 19 21 96 105
11* 4992 135 53 17 9 27 94 104
12 3573 105 79 23 14 42 95 105
13 3142 103 63 27 11 25 98 108
14 2787 118 34 31 1 2 99 101
15 2795 150 108 35 24 49 98 107
16 82161432 43 8 6 1 1 99 107
17 45601025 66 13 8 4 1 99 105
18 81600312 40 8 6 1 1 99 106
19 45601025 66 12 8 3 1 99 102
20 74065202 40 9 6. 2 1 99 108
21 40137087 44 11 8 2 1 99 101
22 73429862 32 8 6 l 1 99 109
23 39354594 33 11 8 2 1 99 101
24 . 85926653 91 7 3 3 1 98 106
25 58203746 66 9 5 3 1 99 101
26 74267081 65 6 3 2 1 97 102
27 47295639 57 7 4 2 1 99 107
28 131316225 201 31 20 9 2 g9 107
29 113594497 260 81 25 28 28 97 107
30 90569484 337 148 23 62 63 a3 104
31 84943754 296 INA 24 16 4 29 109
32 180390305 529 80 48 25 7 98 109
33 205246112 453 78 47 22 9 o8 108
34 166247998 477 86 51 23 12 97 107
35 163964307 503 68 52 11 S 99 107
* Po = 10.
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